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Abstract
Hard turning operations have been extensively investigated owing to their ability to reduce process cycle time, increase process
flexibility, ensure high-dimensional accuracy, and enable machining without a cutting fluid. These processes are rather common
for dealing with multiple quality characteristics. To evaluate the process ability and meet customer needs, multivariate statistical
techniques are recommended for estimating the capability indices. Principal component analysis can be applied to reducing the
problem dimension and estimate process capability indices. The aim of this study was to assess the capability of AISI 52100
hardened steel turning operations and achieve process specifications. Multivariate process capability indices were calculated to
assess five roughness parameters of surface finishing. By using a weighted approach of principal component analysis, a new
method is proposed for estimating the process capability indices. The results highlight not only the relevance of conducting a
multivariate capability analysis in the case of actual machining but also how successfully the proposed method was performed.
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1 Introduction

Recently, extensive attention has been focused on the under-
standing of hard turning processes [1–4]. The traditional ma-
chining of hardened materials usually requires rough turning,

heat treatment, and grinding processes. Nevertheless, hard
turning can eliminate part of these processes. As a result, the
process cycle time is reduced, while productivity is increased
[4]. This operation has become an important manufacturing
process within a wide range of industrial applications such as
gears, shafts, bearings, cams, forged parts, molds, and dies [5].
In this process, material hardness is usually greater than 45
HRC [6]. The turning operation is performed with advanced
tool materials, such as mixed ceramics (Al2O3 + TiC) and cu-
bic boron nitride (CBN), which induce significant benefits
such as short cutting time, process flexibility, adequate surface
roughness, high material removal rate, dimensional accuracy,
and machining without a cutting fluid [7]. Additionally, hard
turning takes advantage of modern machine tool operation,
which allows the manufacturing of products with a high com-
plexity of geometries and shapes [8].

Some authors have applied process capability analysis in
order to estimate the machining process ability and operate
within specifications [9–13]. However, thus far, studies on
process capability analysis applied to the hard turning pro-
cess have been limited. Corporations and firms committed
to continuous quality improvement have adopted statistical
process control to predict the current and future states of a
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process. Several tools such as control charts and process
capability indices have been used to statistically evaluate
a process. The latter was applied to assess whether a process
is able to meet process/product requirements and hence sat-
isfy customer needs [14–16].

Currently, a massive amount of data has been generated
through automated industrial processes. As the complexity
of the problem increases, methods that are more comprehen-
sive are required for dealing with such a challenging environ-
ment [17, 18]. As a result, novel research should take into
account multivariate control charts, data mining tools,
Markov Chains, advanced process capability analyses, etc.
[18]. New multivariate process capability indices, based on
principal component analysis, have been proposed since the
first work by [19] and include papers [20–34].

Like most machining processes, hard turning deals with
several correlated quality characteristics [7, 35]. To assess
whether such a process is able to produce good parts, a mul-
tivariate approach must be conducted to estimate the process
capability indices. This research aims to evaluate the capabil-
ity of the AISI 52100 hardened steel turning process with
regard to producing parts within the specifications for corre-
lated roughness parameters. A new method, based on weight-
ed principal component analysis, was applied to estimate

process capability indices. A comparison study was per-
formed against some multivariate indices from the literature
to validate the proposed method. The results of the assessment
of the hard turning process capability demonstrated the ade-
quacy of the proposed method.

The remainder of this paper is structured as follows. Section 2
presents a way to evaluate the multivariate process capability
based on principal component analysis. In Section 3, the pro-
posedWPCmethod is highlighted. Section 4 describes the mul-
tivariate hard turning experiments. Section 5 describes how the
multivariate methods are applied to evaluate whether the hard
turning operation meets the specifications. Finally, Section 6
outlines the main findings of this study.

2 Multivariate process capability analysis

Let Y be a univariate quality characteristic, having a mean μ
and variance σ2. T, LSL, and USL are considered as target
values, lower specification limits, and upper specification
limits, respectively. Univariate process capability indices,
based on normal distribution, can be estimated by a combined
formulation, such as that in [14, 21, 36]:

Cp u; vð Þ ¼ d−u μ−Tj j
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ v μ−Tð Þ2

q : ð1Þ
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Fig. 1 Multivariate process capability indices based on PC methods
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Fig. 2 Multivariate process capability indices based on proposed WPC
method
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In this expression, d = (USL − LSL) / 2, T = (USL + LSL) / 2
and (u,v) are two non-negative parameters. By assuming a
value of 0 and/or 1 for parameters u and v, Eq. (1) becomes:

Cp 0; 0ð Þ ¼ Cp ¼ USL−LSLð Þ= 6σð Þ ð2Þ
Cp 1; 0ð Þ ¼ Cpk ¼ d− μ−Tj jð Þ= 3σð Þ ð3Þ

Cp 0; 1ð Þ ¼ Cpm ¼ USL−LSLð Þ= 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ μ−Tð Þ2

q� �
ð4Þ

Cp 1; 1ð Þ ¼ Cpmk ¼ d− μ−Tj jð Þ= 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ μ−Tð Þ2

q� �
: ð5Þ

In multivariate context, by considering that Y′ = (Y1, Y2,…,
Ym) represents the vector of q quality characteristics with a vec-
tor of mean μ and positive definite variance-covariance matrix
Σ. The vectors of the target value, lower specifications, and
upper specifications are T′ = (T1, T2,…, Tq), LSL

′ = (LSL1,
LSL2,…, LSLq), and USL′ = (USL1,USL2,…,USLq), respec-
tively. The scores of principal components are calculated by:

PCi ¼ e
0
iY ð6Þ

where ei are the eigenvectors of each PCi, and Y may take a
standardized form if the correlation matrix is used to estimate
the scores of principal components. Multivariate specification
limits and the target value in terms of principal components
and PCi are obtained by [21, 23, 25, 26, 28, 32, 34]:

LSLPCi ¼ e
0
iLSL ð7Þ

USLPCi ¼ e
0
iUSL ð8Þ

TPCi ¼ e
0
iT: ð9Þ

Wang and Chen [19] proposed the evaluation of multivariate
process capability by considering the subset υ (υ ≤ q) of princi-
pal components. They definedMCp,MCpk,MCpm, andMCpmk,
by using the univariate process capability indices for each prin-
cipal component. A combined formulation of the multivariate
process capability indices is defined by [19], as follows:

M 1Cp u; vð Þ ¼ ∏
υ

i¼1
CpPCi

u; vð Þ
� �1=υ

: ð10Þ

In this expression, the process capability index CpPCi

u; vð Þ is estimated by Eq. (1); however, d = (USLPCi −

Fig. 4 Mitutoyo portable
roughness checker model Surftest
SJ-201P

Fig. 3 AISI 52100 hardened steel turning operation
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LSLPCi) / 2, T = (USLPCi + LSLPCi) / 2, μPCi
¼ e

0
iμ,

σPCi ¼
ffiffiffiffi
λi

p
, and λi are the eigenvalues of each PCi, for

i = 1, 2, …, υ.
The shortcoming of this capability index is that the prin-

cipal components are equally weighted. As it is widely
known, the first principal components are more relevant
than the latter. To overcome this problem, [37] proposed
the use of the weighted geometric mean. These weights are
based on the eigenvalues λi of each principal component,
as follows:

M 2Cp u; vð Þ ¼ ∏
υ

i¼1
CpPCi

u; vð Þλi
� �1=∑υ

i¼1
λi
: ð11Þ

In the same context, Perakis and Xekalaki [31] proposed
the calculation of multivariate capability indices by using the
weighted arithmetic mean. The weights were also based on the
eigenvalues λi of each principal component, as follows:

M 3Cp u; vð Þ ¼ ∑υ
i¼1ψiCpPCi

u; vð Þ ð12Þ

where ψi ¼ λi=∑υ
j¼1λ j is the explanation percentage of the ith

principal component.
Additionally, Perakis and Xekalaki [31] highlighted

some drawbacks of estimating the multivariate capability
indices for processes with a one-sided specification. When
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Fig. 6 Scatter plot for roughness
parameters Rz, Rq, and Rt
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estimating lower (upper) specification limits, some princi-
pal components may take the place of an upper (lower)
specification limit, due to axes rotation. Therefore, the

authors suggest taking the absolute CpPCi
u; vð Þ�� �� in Eqs.

(9)–(11) to estimate the multivariate process capability
indices.

3 Process capability based on weighted
principal component analysis

The aforementioned multivariate process capability indices
were estimated for each principal component. Subsequently,
an agglutination strategy was performed in order to report the
multivariate index [19, 31, 37]. This procedure is summarized
in Fig. 1.

In this study, the weighting approach was applied to
principal component scores. Then, the process capability
indices were estimated. This proposal was developed based
on Peruchi et al. [38]; however, the authors developed a
new multivariate procedure in order to conduct a distinct
statistical quality technique; namely, measurement system
analysis.

Unlike previous studies, the proposed weighting approach
for estimating multivariate capability indices is described in
the procedure shown in Fig. 2. In step 1, we check whether
there are significant correlations between quality characteris-
tics by using:

CorrYiY j ¼
CovarYiY jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarYiVarY j

p ∀i ¼ 1; 2;…; q;

j ¼ 1; 2;…; q

ð13Þ

where VarYi and VarY j are the ith and jth variances, and

CovarYiY j represents the covariance between Ys.
In Step 2, if significant correlations exist between Ys, we

proceed to Step 3.1, which marks the beginning of the WPC
method for estimating the multivariate process capability in-
dices. On the other hand, if there are no correlations between
Ys, we proceed to Step 3.2 in order to use the univariate ap-
proach by Eqs. (1)–(5).

In Step 3.1, by considering the matrix of standardized data
(Z) and the matrices of weights (W) and eigenvectors (e), the
weighted scores of the principal components are calculated
by:

WPC ¼ W
0
e
0
Z

� 	
ð14Þ

where

W ¼
λ1=∑q

j¼1λ j

λ2=∑q
j¼1λ j

⋮
λq=∑q

j¼1λ j

2
664

3
775 e ¼

e11 e12 ⋯ e1q
e21 e22 ⋯ e2q
⋮ ⋮ ⋱ ⋮
eq1 eq2 … eqq

2
664

3
775

Z ¼

Y 11−Y 1ffiffiffiffiffiffi
s11

p
 !

Y 12−Y 2ffiffiffiffiffiffi
s22

p
 !

⋯
Y 1q−Y qffiffiffiffiffiffisqq
p

 !

Y 21−Y 1ffiffiffiffiffiffi
s11

p
 !

Y 22−Y 2ffiffiffiffiffiffi
s22

p
 !

⋯
Y 2q−Y qffiffiffiffiffiffisqq
p

 !

⋮ ⋮ ⋱ ⋮
Y n1−Y 1ffiffiffiffiffiffi

s11
p

 !
Y n2−Y 2ffiffiffiffiffiffi

s22
p

 !
⋯

Y nq−Y qffiffiffiffiffiffisqq
p

 !

2
666666666664

3
777777777775
:

To test the normality and stability of the WPC vector,
Anderson-Darling and control chart tools can be implemented
in Step 4.More details on these procedures can be found in the
study by Montgomery [15]. In terms of principal component
weighted scores, the target values and specification limits are
obtained in Step 5 as follows:

LSLwpc ¼ W
0
LSLpc ð15Þ

USLwpc ¼ W
0
USLpc ð16Þ

Twpc ¼ W
0
Tpc: ð17Þ

Table 2 Correlation
analysis for roughness
parameters

Ra Ry Rz Rq

Ry 0.314a

0.006b

Rz 0.682 0.675

0.000 0.000

Rq 0.938 0.462 0.834

0.000 0.000 0.000

Rt 0.312 0.876 0.682 0.477

0.006 0.000 0.000 0.000

a Pearson correlation
b p value

Table 1 Normality test and univariate process capability estimates

Variable Normality test USL μ̂ σ̂ Cp(1,0)

Ra 0.480a (0.228b) 0.80 0.681 0.045 0.879

Ry 0.687 (0.070) 3.29 3.048 0.313 0.258

Rz 0.349 (0.467) 2.85 2.621 0.176 0.435

Rq 0.400 (0.354) 0.86 0.775 0.050 0.564

Rt 0.728 (0.055) 3.50 3.211 0.319 0.302

aAnderson-Darling test for normality
b p value for normality test
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Finally, the multivariate process capability indices based on
weighted principal component analysis can be estimated in
Step 6, as follows:

MwpcCp u; vð Þ ¼ d−u μ−Tj j
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ v μ−Tð Þ2

q : ð18Þ

In this expression, (u,v) are two non-negative parameters;
namely, d = (USLwpc − LSLwpc)/2 and T = (USLwpc + LSLwpc)/
2; μwpc ¼ W

0
e
0
iμ


 �
, σwpc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q

i¼1W iλi

p
, and λi are the ei-

genvalues of each PCi for i = 1, 2, …, υ.

4 Hardened steel turning application

The multivariate machining process evaluated in this re-
search was the AISI 52100 hardened steel turning in
Fig. 3. The workpieces (1.03% C; 0.23% Si; 0.35% Mn;

1.40% Cr; 0.04% Mo; 0.11% Ni; 0.001% S; 0.01%) with
dimensions of Ø 49 mm × 50 mm were machined with the
Nardini CNC lathe, with a maximum rotational speed of
4000 rpm and cutting power of 5.5 kW. The workpieces
were quenched and tempered such that their hardness was
between 49 and 52 HRC, up to a depth of 3 mm below the
surface. The controlled machining parameters were the
cutting speed S = 220 m min−1, feed rate F = 0.30 mm
rev−1, and cut depth D = 0.225 mm [7]. Wiper used
mixed ceramic (Al2O3 + TiC) inserts (ISO code CNGA
120408 S01525WH) and inserts coated with a very thin
layer of titanium nitride (Sandvik-Coromant GC 6050).
The tool holder presented a negative geometry with an
ISO code DCLNL 1616H12 and entering angle χ r = 95°.

In this multivariate process capability analysis, five rough-
ness parameters were analyzed: Ra (arithmetic average), Ry
(maximum), Rz (10-point height), Rq (root mean square),
and Rt (maximum peak to valley). Roughness parameters are
critical-to-quality characteristics, often used as technical re-
quirements for mechanical products. Achieving a high level
of quality for these quality characteristics is of great impor-
tance for the functional behavior of a mechanical part [39].
Figure 4 shows the equipment evaluated in this study, which
was a Mitutoyo portable roughness checker set to a cut-off
length of 0.8 mm.

5 Turning operation capability analysis

Prioritizing the critical-to-quality characteristic is a com-
mon strategy in quality improvement projects. Thus, due
to its relevance in most manufacturing processes, the

3
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WPC

1.296

1.296

3.256

2.292

Fig. 7 Scatter plot for principal
components PC1, PC2, and WPC

Table 3 Principal component analysis for roughness parameters

PC1 PC2 PC3 PC4 PC5

Eigenvalues 3.519 1.137 0.189 0.124 0.030

Proportions 70% 23% 4% 3% 1%

Cumulative 70% 93% 97% 99% 100%

Eigenvectors PC1 PC2 PC3 PC4 PC5

Ra 0.416 − 0.547 − 0.46 0.022 − 0.561
Ry 0.419 0.521 − 0.276 0.688 0.055

Rz 0.497 − 0.034 0.821 0.074 − 0.269
Rq 0.476 − 0.402 − 0.044 − 0.066 0.778

Rt 0.422 0.516 − 0.189 − 0.718 − 0.063
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roughness parameter Ra was selected [40]. The dataset
for turning the operation capability analysis is shown in
Table appendix table 5 and Figs. 5–6. Minimum rough-
ness is better; thereby, only the upper specification limit
USL = 0.8 μm was provided. As shown in Table 1, pa-
rameter Ra was well adjusted to a normal distribution
and the process capability index Cp(1,0) could be esti-
mated by Eq. (3). By assessing the arithmetic roughness
parameter Ra, Cpk = 0.88 determines that the process is
inadequate [16, 21, 41].

Nevertheless, parameter Ra is not enough for modeling the
surface roughness of a part. When a non-typical valley or peak
is measured, Ra is unable to detect such surface characteristics.
A process capability analysis in terms of parameter Ry must be
conducted [40], since it is widely known as a measure for
checking the deterioration of the part’s vertical surface. For
parameter Ry, the upper specification limit was USL =
3.29 μm. By using version Cp(1,0) in Eq. (1), Cpk could be
calculated according to Eq. (3). By assessing the maximum
roughness parameter Ry, Cpk = 0.26 determined that the pro-
cess is poor [16, 21, 41].

The parameter Ry alone fails to provide sufficient informa-
tion about the surface of a part. Various forms of surface
roughness may have the same Ry value. When assessing Ra
and Ry by using univariate statistical techniques, there might
be ambiguity with regard to the capabilities of the process. In
fact, a more comprehensive surface roughness modeling
would take into account not only Ra and Ry but also Rz, Rq,
and Rt. Thus, univariate process capability indices for these
parameters are summarized in Table 1. All roughness param-
eters were measured by the same measuring device and cor-
related to one another (Table 2). Therefore, a multivariate
process capability analysis must be conducted to arrive at
a final decision with regard to the process’ ability of meeting
the specifications.

In this multivariate process capability study, Ra and Ry were
assessed, along with Rz, Rq, and Rt. By applying the PCmethod
in Fig. 1, principal component analysis was conducted, and the
results are given in Table 3. In Step 3.1, the scores of principal
components were calculated by using Eq. (6). Because PC1 and
PC2 account for 93% of the total variation, only this subset of
components was included in the PCmethod. Figure 7 illustrates
a scatter plot of the principal component scores used in this study.
In Step 4, since the PC2 vector cannot be adjusted to a normal
distr ibution (Table 4), a Johnson transformation

( PC*
2 ¼ −0:724þ 1:730� Asinh X þ 0:731ð Þð =1:514Þ )

was applied to estimate CpPCi(1,0). In Step 5, the upper specifi-
cation limits, in terms of principal components, were calculated
by Eq. (8) to estimate M1Cp(1,0), M2Cp(1,0), and M3Cp(1,0).
For Step 6, Table 4 summarizes the process capability indices
CpPC1

1; 0ð Þ and CpPC2
1; 0ð Þ for each principal component

using Eq. (3). Eventually, by using Eqs. (10)–(12), the multivar-
iate capability indices in Step 7 were calculated based only on
PC1 and PC2. According to M1Cp(1, 0) = 0.494,M2Cp(1, 0) =
0.536, andM3Cp(1, 0) = 0.503, thismultivariate hard turning pro-
cess was unable to meet the specifications and was deemed as
inadequate.

At this point, by focusing on the proposed multivariate
index, the weighted scores of principal components in Step
3.1 of Fig. 2 were calculated by using Eq. (14) and can be seen
in Fig. 7. It is important to highlight that the proposed method
takes into account all principal components for obtaining the
WPC vector. Before assessing the capability of the process, in
Step 4, the normality assumption on the WPC vector was
checked and confirmed by the Anderson–Darling test, as in
Table 4. For Step 5, the upper specification limits, in terms of
weighted principal component, were calculated with Eq. (16).
By using Eq. (18) in Step 6, MwpcCp(1, 0) = 0.461 also indi-
cates that the multivariate process is inadequate.

In summary, the proposed method was successful since it was
able to provide similar results in relation to methods cited in the
literature. Nevertheless, some obvious advantages of the pro-
posed procedure should be highlighted. First, while the methods
in the literature have been applied to a few principal components,
theWPCmethodwas applied to allPCs and 100%of the original
variation was taken into account. Secondly, to estimate the
methods cited in the literature, a normality test should be con-
ducted for all PCs in Eqs. (10)–(12), while the WPC method
requires only one normality test. Eventually, the process stability
studies based on literature methods would require the evaluation
of control charts for each principal component before estimating
the process capability. In the proposed method, a control chart
procedure would be applied only to the WPC vector. Finally,
further investigation must be conducted to investigate how the
setup of control variables should be changed to improve the
overall process capability. Some useful optimization methods
such as [1, 7, 35] could be used to address this issue.

Table 4 Normality test, upper specification limit and process capability
estimates for principal components

Normality test USLpci σ̂ CpPCi(1,0)

PC1 0.284a

(0.621b)
3.256 1.876 0.579

PC2 0.802 (0.032) − 1.296
(− 1.182c)

1.066
(0.952c)

0.405
(0.422c)

PC3 − 0.601

PC4 − 0.075

PC5 − 0.527

WPC 0.330 (0.510) 2.292

aAnderson-Darling statistic for normality test
b p value for normality test
c Estimates after Johnson transformation

Int J Adv Manuf Technol



6 Conclusion

Hard turning can eliminate the grinding process in machining
hardened materials. For this, a capability analysis should be
conducted to verify if the product meets the specifications.
Since these processes usually present multiple quality character-
istics, this study aimed to explore the multivariate analysis of the
capability to measure the roughness of the pieces. By evaluating
the process capability based on the Ra parameter, the case was
classified as inadequate, such that Cp = 0.88. However, parame-
ter Ry, which evaluates the dispersion of the roughness profile,
classified the process as poor, such that Cp = 0.26. Hence, the
univariate approach was unable to come up with a final decision
regarding the ability of the process to meet specifications.

Literature and the proposed methods for estimating multi-
variate capability indices were performed. The results based
on PC and WPC methods classified the hard turning process
as inadequate. This study indicated that the weighting scores
of principal components were also a reasonable approach to

estimate the multivariate capability indices. Moreover, the
proposed method depended on fewer assumptions when
performing multivariate process capability analysis, in com-
parison to literature methods. As highlighted in the previous
section, the power of reducing the problem dimension was
greater with regard to conducting the weighted principal com-
ponent method.

Further investigation needs to be carried out to investigate
the effectiveness of the weighted principal component method
in scenarios with distinct correlation structures and process
capability requirements. Moreover, a multivariate optimiza-
tion procedure should be applied to improve the multivariate
process capability indices.
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Appendix

Table 5 Dataset of the hard turning experiment for process capability assessment

Ra Ry Rz Rq Rt Ra Ry Rz Rq Rt Ra Ry Rz Rq Rt

0.70 3.24 2.65 0.80 3.28 0.78 3.66 2.90 0.91 3.76 0.63 2.54 2.23 0.70 2.54
0.66 3.23 2.80 0.76 3.23 0.67 2.94 2.67 0.77 3.49 0.68 3.09 2.60 0.77 3.28
0.69 3.03 2.85 0.83 3.21 0.68 2.95 2.53 0.77 2.95 0.65 3.05 2.52 0.73 3.24
0.64 2.93 2.49 0.75 3.37 0.65 3.18 2.54 0.75 3.31 0.65 3.11 2.71 0.75 3.51
0.66 2.80 2.48 0.75 2.86 0.72 2.90 2.46 0.80 2.96 0.63 2.70 2.54 0.72 3.24
0.61 2.70 2.30 0.69 2.96 0.71 3.09 2.60 0.79 3.09 0.71 2.78 2.53 0.78 2.88
0.67 3.04 2.43 0.76 3.04 0.70 3.01 2.63 0.79 3.31 0.63 2.26 2.21 0.71 2.76
0.69 2.86 2.60 0.79 2.92 0.66 2.85 2.56 0.75 3.15 0.67 2.92 2.57 0.75 2.93
0.64 3.60 2.61 0.76 4.06 0.68 3.36 2.71 0.78 3.47 0.68 3.20 2.51 0.77 3.20
0.67 3.33 2.59 0.76 3.58 0.77 3.21 2.81 0.86 3.64 0.66 4.00 2.59 0.72 4.10
0.67 3.24 2.57 0.77 3.44 0.73 2.90 2.78 0.83 3.15 0.67 3.03 2.63 0.75 3.05
0.71 3.27 2.68 0.81 3.27 0.69 2.87 2.71 0.78 3.16 0.67 2.93 2.52 0.76 2.93
0.62 2.72 2.50 0.72 2.83 0.69 2.88 2.48 0.77 2.88 0.71 3.61 2.91 0.80 3.79
0.66 2.84 2.42 0.74 2.84 0.70 2.89 2.76 0.80 3.27 0.61 2.68 2.42 0.69 2.77
0.78 2.80 2.69 0.85 3.04 0.71 2.77 2.68 0.79 3.19 0.67 2.55 2.43 0.75 2.92
0.77 2.71 2.58 0.83 2.86 0.67 3.17 2.69 0.76 3.17 0.70 2.92 2.70 0.79 3.13
0.74 3.19 2.85 0.85 3.46 0.72 2.94 2.57 0.79 3.06 0.61 2.48 2.30 0.68 2.68
0.61 2.92 2.39 0.70 2.98 0.58 3.21 2.42 0.67 3.21 0.69 2.74 2.52 0.76 2.96
0.72 3.53 2.97 0.85 3.65 0.77 3.82 3.13 0.90 3.82 0.73 3.20 2.87 0.83 3.38
0.69 3.01 2.74 0.79 3.13 0.77 3.24 2.90 0.87 3.36 0.67 2.77 2.54 0.76 3.11
0.67 3.29 2.81 0.81 3.60 0.74 3.10 2.77 0.83 3.24 0.65 2.68 2.53 0.75 2.81
0.71 3.34 2.91 0.84 3.53 0.73 3.15 2.76 0.82 3.28 0.63 3.03 2.58 0.74 3.09
0.69 3.27 2.71 0.81 3.87 0.64 2.80 2.47 0.72 2.87 0.62 3.13 2.60 0.72 3.13
0.71 3.27 2.69 0.80 3.27 0.73 2.97 2.58 0.80 3.06 0.63 2.91 2.64 0.74 3.07
0.66 3.66 2.79 0.78 3.66 0.63 2.84 2.41 0.71 2.87 0.62 3.28 2.46 0.71 3.28
0.73 3.56 2.90 0.85 3.56
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